Layer-by-layer assembly of biologically inert inorganic ions/DNA multilayer films for tunable DNA release by chelation.

نویسندگان

  • Fuan Wang
  • Jianlong Wang
  • Yueming Zhai
  • Gaiping Li
  • Dan Li
  • Shaojun Dong
چکیده

In this work, we illustrate a simple chelation-based strategy to trigger DNA release from DNA-incorporated multilayer films, which were fabricated through the layer-by-layer (LbL) assembly of DNA and inorganic zirconium (IV) ion (Zr(4+)). After being incubated in several kinds of chelator solutions, the DNA multilayer films disassembled and released the incorporated DNA. This was most probably due to the cleavage of coordination/electrostatic interactions between Zr(4+) and phosphate groups of DNA. Surface plasmon resonance (SPR), UV-vis spectrometry and atomic force microscopy (AFM) were used to characterize the assembly and the disassembly of the films. By incorporating plasmid DNA (pDNA) into this controllable disassembly system, the multilayer films sustained the consecutive DNA release. The released pDNA retained its integrity and transcriptional activity, and also expressed enhanced green fluorescent protein (EGFP) after being transfected into HEK 293 cells. Besides the simplicity and cost efficiency of this method, the most advantage of this route was that the release of DNA from the films could be modulated by various external conditions, such as the chelator and ionic strength. The Zr(4+)/DNA multilayer films with the ability to precisely control the release rate of DNA might serve as an alternative localized gene delivery system in the perspective of biomedical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilayer Nano Films for Corrosion Control

Nano films consisting of an alternating sequence of positively and negatively charged polyelectrolytes have been prepared by means of the electrostatic layer-by-layer (LBL) sequential assembly technique on treated and untreated mild steel wires. Inhibitor was encapsulated between cationic and anionic polyelectrolyte nano films. This paper mainly focuses on the effect of these nano-films of poly...

متن کامل

Second Harmonic Generation Diagnostic of Layer by Layer Deposition from Disperse Red 1–Functionalized Maleic Anhydride Copolymer

Layer-by-layer (LBL) electrostatic assembly of poly-electrolytes is proving to be an increasingly rich and versatile technique for the formation of multilayered thin films with a wide range of electrical, magnetic, and optical properties. In the present work we synthesized a new nonlinear optical (NLO) maleic acid copolymer containing Disperse Red 1 moieties, built-up multilayer assemblies by a...

متن کامل

Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems.

There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyel...

متن کامل

Steel Coated with Cationic Poly (Ethylenimine) (PEI) and Anionic Poly (Vinylsulfate) (PVS) Polyelectrolyte Multilayer Nanofilm with Different Benzotriazole Inhibitor Concentrations

Nano-films consisting of an alternating sequence of positively and negatively charged polyelectrolyteshave been prepared by means of the electrostatic layer-by-layer sequential assembly technique on mildsteels. The mild steels were pretreated electrochemically to modify the mild steel surface. The modificationof the mild steel surface resulted in increasing the adhesion of the obtained nano-fil...

متن کامل

Controlling the surface‐mediated release of DNA using ‘mixed multilayers’

We report the design of erodible 'mixed multilayer' coatings fabricated using plasmid DNA and combinations of both hydrolytically degradable and charge-shifting cationic polymer building blocks. Films fabricated layer-by-layer using combinations of a model poly(β-amino ester) (polymer 1) and a model charge-shifting polymer (polymer 2) exhibited DNA release profiles that were substantially diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of controlled release : official journal of the Controlled Release Society

دوره 132 1  شماره 

صفحات  -

تاریخ انتشار 2008